

Date Planned : / /	Daily Tutorial Sheet-9	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-2	Exact Duration :

106.	The equilibrium constant K_{p_1} and K_{p_2} for the reaction $X \Longrightarrow 2Y$ and $Z \Longrightarrow P+Q$, respectively are
	in the ratio of $1:9$. If the degree of dissociation of X and Z be equal, then the ratio of total pressure at
	these equilibria is : (All gaseous)

(A) 1:36 **(B)** 1:1 (C) 1:3

(D) 1:9 107. The equilibrium constant K_c for the reaction $P_4(g) \rightleftharpoons 2P_2(g)$ is 1.4 at 400°C. Suppose that 3 moles of $P_4(g)$ and 2 moles of $P_2(g)$ are mixed in 2 litre container at 400°C. What is the value of reaction lacksquarequotient (Q)?

(A)

(B)

(C)

(D) None of these

108. Formaldehyde polymerizes to form glucose according to the reaction, 6 HCHO \rightleftharpoons $C_6H_{12}O_6$. The theoretically computed equilibrium constant for this reaction is found to be 6×10^{22} . If 1M solution of glucose dissociates according to the above equilibrium, the concentration of formaldehyde in the solution will be: lacksquare

 $1.6 \times 10^{-2} \,\mathrm{M}$ (A)

 $1.6 \times 10^{-4} \,\mathrm{M}$ (B)

 $1.6 \times 10^{-6} \,\mathrm{M}$ (C)

(D)

109. The vapour density of N_2O_4 at a certain temperature is 30. Calculate the percentage dissociation of N_2O_4 at this temperature.

(A)

53.5%

60%

(C) 74.5% **(D)** 64.5%

110. In the following equilibrium

 $N_2O_4(g) \Longrightarrow 2NO_2(g)$

When 5 moles of each is taken and the temperature is kept at 298 k, the total pressure was found to be

Given: $\Delta G_f^{\circ}(N_2O_4) = 100 \text{ kJ}$

$$\Delta G_f^{\circ}(NO_2) = 50 \text{ kJ}$$

Find ΔG° of the reaction at 298 K

(A) $-4.68\,\mathrm{kJ}$ (B)

 $-6.04 \, kJ$

(C) $-5.705 \, kJ$ (D) $0.4 \, kJ$

At a particular temperature, $PCl_5(g)$ undergoes 50% dissociation. The equilibrium constant for 111. $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ is 2atm. The pressure of the equilibrium mixture is

(A) 2 atm **(B)** 6 atm (C) 8 atm **(D)** 5 atm

112. Calculate the partial pressure of carbon monoxide from the following data's (\mathbf{I})

 $CaCO_3(s) \xrightarrow{\Delta} CaO(s) + CO_2(g); K_p = 8 \times 10^{-2}$

 $CO_2(g) + C(s) \longrightarrow 2CO(g); K_p = 2$

(A)

(B) 0.4 (C) 1.6 (D) 4

113. Given the equilibrium system $NH_4Cl(s) \rightleftharpoons NH_4^+$ (aq) + Cl^- (aq)

What change will shift the equilibrium to the right? ($\Delta H = +3.5 \text{ kcal / mol}$)

- **(A)** Decreasing the temperature
- **(B)** Increasing the temperature
- (C) Dissolving NaCl crystals in the equilibrium mixture
- (D) Dissolving NH₄NO₃ crystals in the equilibrium mixture
- **114.** The exothermic formation of ClF₃ is represented by the equation

$$Cl_2(g) + 3F_2(g) \rightleftharpoons 2ClF_3(g); \Delta H = -329 \text{ kJ}$$

Which of the following will increase the quantity of ClF3 in an equilibrium mixture of Cl2 F2 and ClF3?

(A) Adding F_2

(B) Increasing the volume of the container

(C) Removing Cl₂

- **(D)** Increasing the temperature
- 115. For the gaseous reaction, $C_2H_4(g)+H_2(g) \rightleftharpoons C_2H_6(g)$, $\Delta H(g)=-130\,\mathrm{kJ\,mol}^{-1}\,\mathrm{carried}$ in a closed vessel, the equilibrium concentration of the C_2H_6 can definitely be increased by :
 - (A) Increasing temperature and decreasing pressure
 - **(B)** Decreasing temperature and pressure both
 - (C) Increasing temperature and pressure both
 - (D) Decreasing temperature and increasing pressure